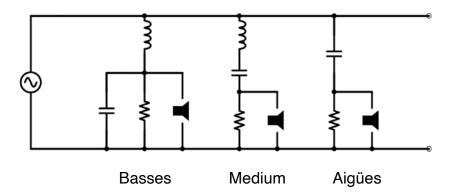
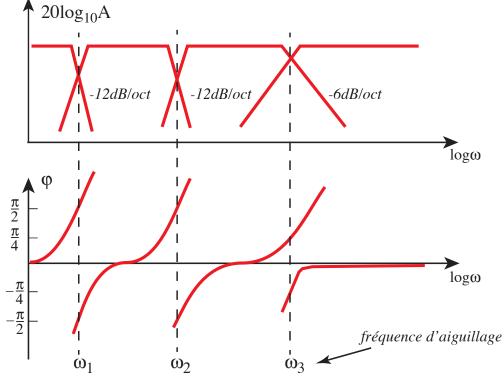
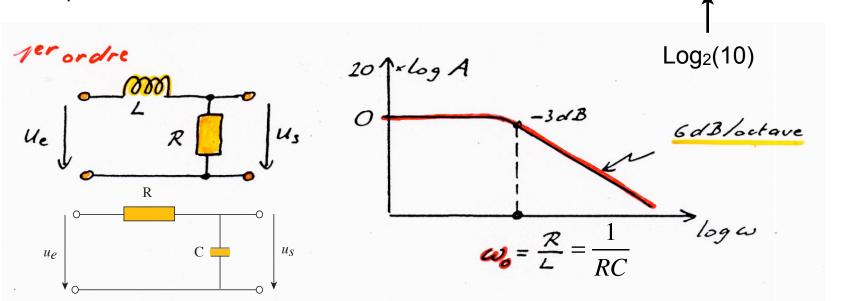

Expérimentation sur les circuits - II Dipôles et quadripôles D. Mari



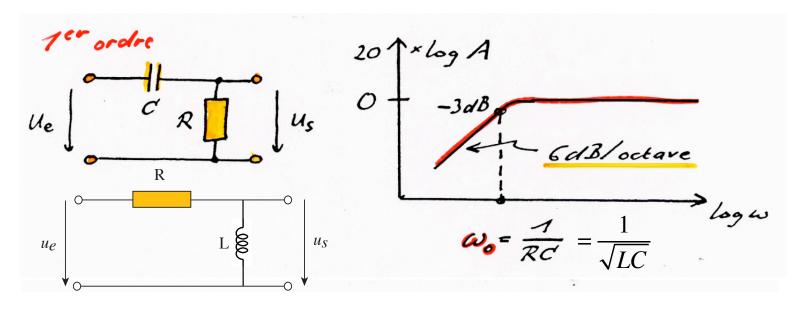

Les colonnes sonores

Pour aiguiller le son sur chaque haut-parleur (basse, médium, aigu) de la colonne, on utilise des filtres passifs d'aiguillage composés de résistances, inductances et condensateurs

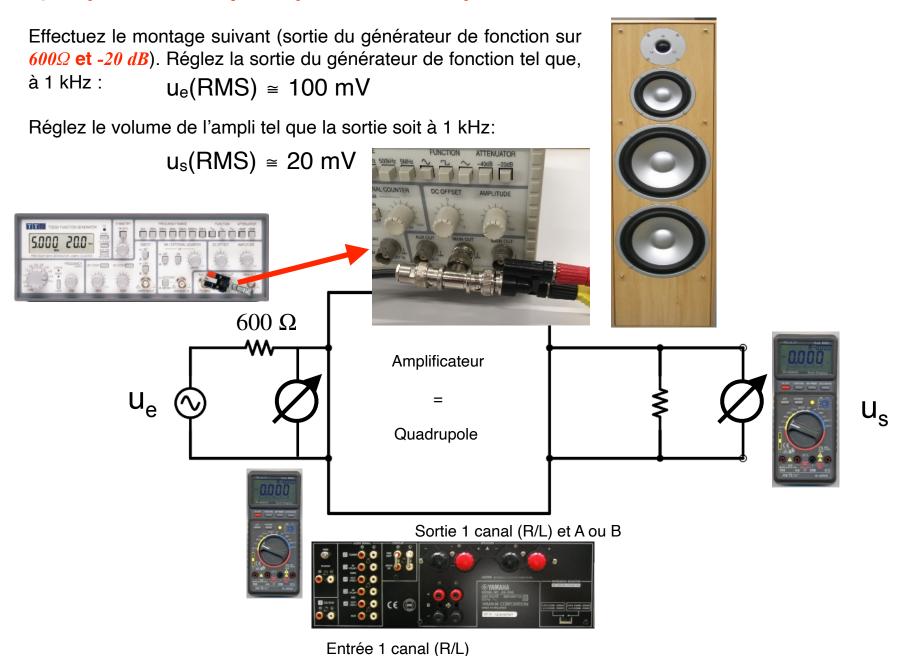
Exemple de filtres d'aiguillage



Les filtres passifs


Filtres passe-bas

Note: 6 dB/octave=20dB/décade Ou dB/décade=3.32dB/octave



Les filtres passifs

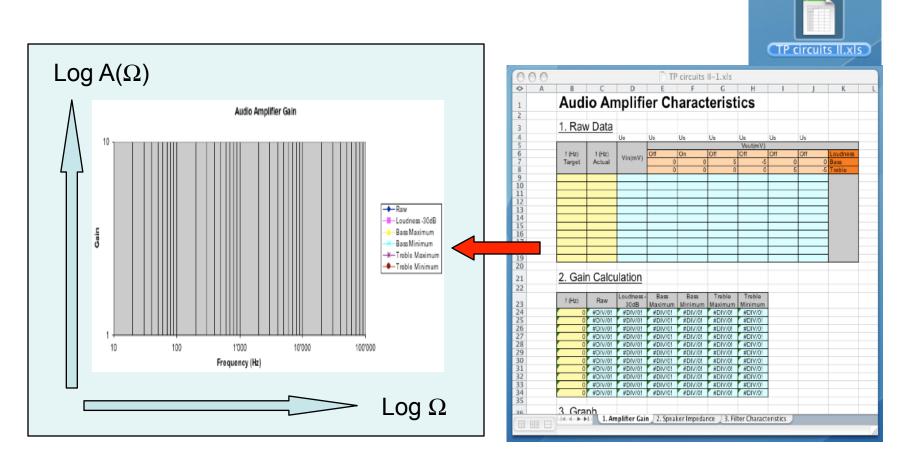
Filtres passe-haut

1) Réponse d'un quadripôle actif: l'ampli HI-FI

1) Réponse d'un quadripôle actif: l'ampli HI-FI

Effectuez le montage suivant (sortie du générateur de fonction sur 600Ω et $-20 \ dB$). Réglez la sortie du générateur de fonction tel que, à 1 kHz :

$$u_e(RMS) \approx 100 \text{ mV}$$

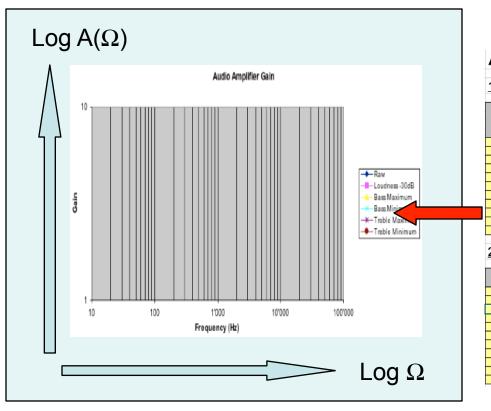

Réponse d'un quadripôle actif: l'ampli HI-FI

Reportez dans un diagramme log-log (diagramme de Bode) *le gain* de l'ampli en fonction de la fréquence de l'entrée (signal sinusoïdal, 20 Hz à 20 kHz), pour les correcteurs physiologiques (basse, aigue ou loudness) placés:

- au minimum
- au centre
- au maximum

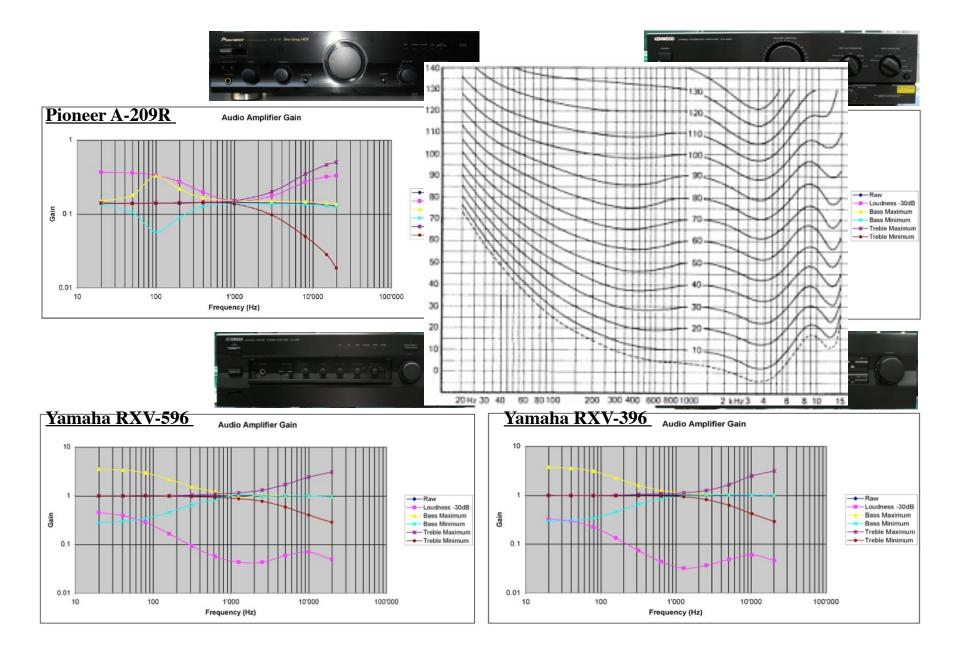
$$u_e(RMS) \cong 100 \text{ mV}$$

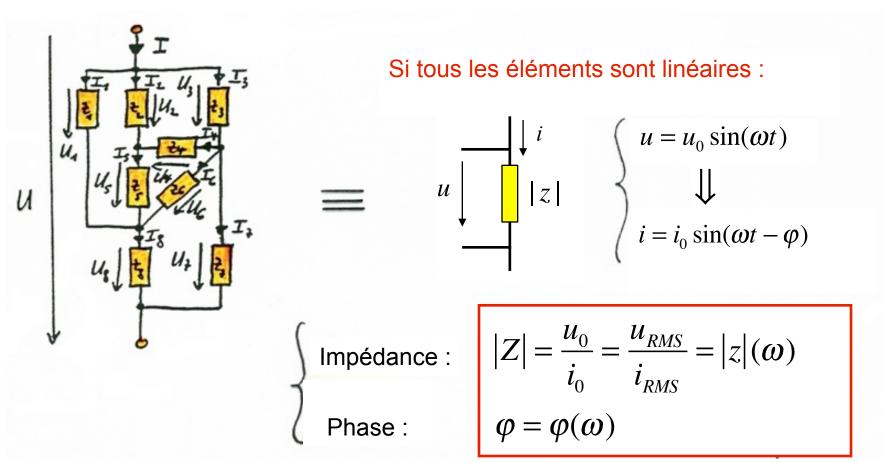
$$|A| = \frac{u_s(RMS)}{u_e(RMS)}$$



Réponse d'un quadripôle actif: l'ampli HI-FI

$$u_e(RMS) \cong 100 \text{ mV}$$


$$|A| = \frac{u_s(RMS)}{u_e(RMS)}$$


1. Rav	v Data									
		Ue	Us	Us	Us	Us	Us	Us		
f (Hz) Target	f (Hz) Actual	Vin(mV)	Vout(mV)							
			Off	maxi	Off	Off	Off	Off	Loudnes	
			0	0	maxi	mini	0	0	Bass	
			0	0	0	0	maxi	mini	Treble	
20	20	98.5	19.2	50.6	20.4	18.2	19.2	19.2		
100	100	99.3	19.5	45.9	46.3	7.9	19.6	19.5		
500	499	99.5	20.0	25.1	22.2	18.3	23.0	19.9		
1'000	1'002	99.6	19.9	20.8	21.0	19.0	21.0	19.1		
2'000	2'002	99.6	19.7	21.5	20.7	19.0	23.9	16.4		
4'000	3'993	99.6	19.7	27.7	20.5	18.9	31.9	11.6		
7'000	7'014	99.5	19.5	35.8	20.4	18.7	44.3	8.1		
10'000	9'992	99.5	19.3	40.8	20.2	18.5	54.0	5.9		
14'000	14'010	99.5	18.9	45.6	20.3	18.6	64.1	4.6		
18'000	18'007	99.5	19.0	47.0	19.9	18.3	69.5	3.6		
20'000	19'984	99.5	18.8	47.3	19.7	18.0	71.3	3.0		
2. Gai	n Calcu	lation								
£ // I=\	D	Loudness -	Bass	Bass	Treble	Treble	275275			
f (Hz)	Raw	Loudness -	Bass Maximum	Bass Minimum	Treble Maximum	Treble Minimum				
f (Hz)	Raw 0.194924									
		30dB	Maximum	Minimum	Maximum	Minimum				
20	0.194924	30dB 0.513706	Maximum 0.207107	Minimum 0.184772	Maximum 0.194924	Minimum 0.194924				
20 100	0.194924 0.196375	30dB 0.513706 0.462236	Maximum 0.207107 0.466264	Minimum 0.184772 0.079557	Maximum 0.194924 0.197382	Minimum 0.194924 0.196375				
20 100 499 1'002 2'002	0.194924 0.196375 0.201005 0.199799 0.197791	30dB 0.513706 0.462236 0.252261 0.208835 0.215863	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831	Minimum 0.184772 0.079557 0.18392 0.190763 0.190763	Maximum 0.194924 0.197382 0.231156 0.210843 0.23996	Minimum 0.194924 0.196375 0.2 0.191767 0.164659				
20 100 499 1'002	0.194924 0.196375 0.201005 0.199799	30dB 0.513706 0.462236 0.252261 0.208835	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831 0.205823	Minimum 0.184772 0.079557 0.18392 0.190763	Maximum 0.194924 0.197382 0.231156 0.210843	Minimum 0.194924 0.196375 0.2 0.191767				
20 100 499 1'002 2'002	0.194924 0.196375 0.201005 0.199799 0.197791	30dB 0.513706 0.462236 0.252261 0.208835 0.215863	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831	Minimum 0.184772 0.079557 0.18392 0.190763 0.190763	Maximum 0.194924 0.197382 0.231156 0.210843 0.23996	Minimum 0.194924 0.196375 0.2 0.191767 0.164659				
20 100 499 1'002 2'002 3'993	0.194924 0.196375 0.201005 0.199799 0.197791 0.197791 0.19598 0.19397	30dB 0.513706 0.462236 0.252261 0.208835 0.215863 0.278112 0.359799 0.41005	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831 0.205823 0.205025 0.203015	Minimum 0.184772 0.079557 0.18392 0.190763 0.190763 0.189759 0.18794 0.18593	Maximum 0.194924 0.197382 0.231156 0.210843 0.23996 0.320281 0.445226 0.542714	Minimum 0.194924 0.196375 0.2 0.191767 0.164659 0.116466 0.081407 0.059296				
20 100 499 1'002 2'002 3'993 7'014	0.194924 0.196375 0.201005 0.199799 0.197791 0.197791 0.19598	30dB 0.513706 0.462236 0.252261 0.208835 0.215863 0.278112 0.359799 0.41005 0.458291	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831 0.205823 0.205025	Minimum 0.184772 0.079557 0.18392 0.190763 0.190763 0.189759 0.18794	Maximum 0.194924 0.197382 0.231156 0.210843 0.23996 0.320281 0.445226	Minimum 0.194924 0.196375 0.2 0.191767 0.164659 0.116466 0.081407 0.059296 0.046231				
20 100 499 1'002 2'002 3'993 7'014 9'992	0.194924 0.196375 0.201005 0.199799 0.197791 0.197791 0.19598 0.19397	30dB 0.513706 0.462236 0.252261 0.208835 0.215863 0.278112 0.359799 0.41005	Maximum 0.207107 0.466264 0.223116 0.210843 0.207831 0.205823 0.205025 0.203015	Minimum 0.184772 0.079557 0.18392 0.190763 0.190763 0.189759 0.18794 0.18593	Maximum 0.194924 0.197382 0.231156 0.210843 0.23996 0.320281 0.445226 0.542714	Minimum 0.194924 0.196375 0.2 0.191767 0.164659 0.116466 0.081407 0.059296				

Réponse d'un quadripôle actif: l'ampli HI-FI

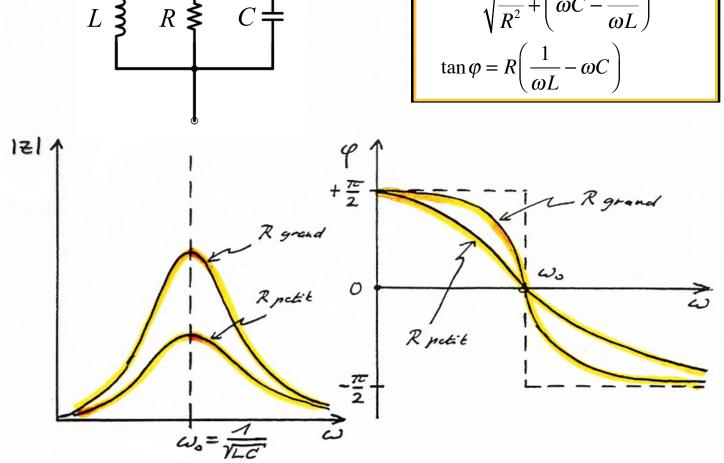
Les dipôles

On appelle dipôle un ensemble d'éléments à deux bornes

En règle générale, le calcul d'un dipôle fait appel au calcul complexe

Les dipôles

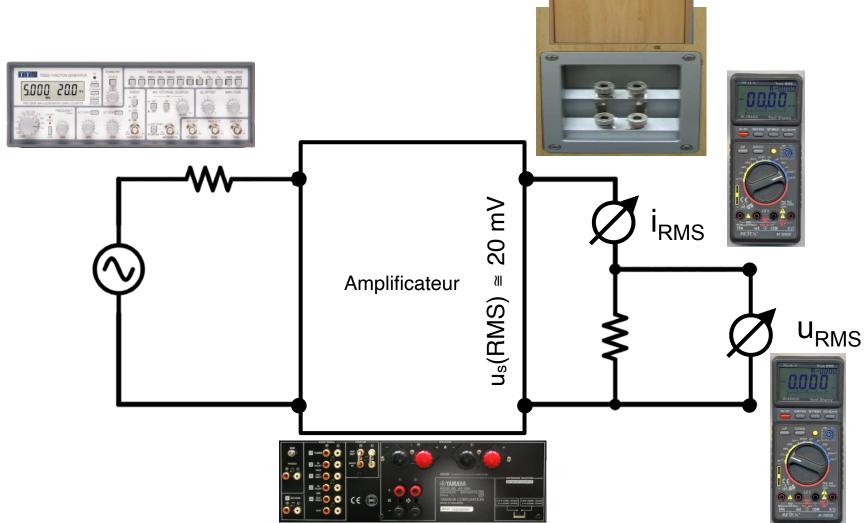
Exemple: circuit résonnant parallèle


Loi d'Ohm

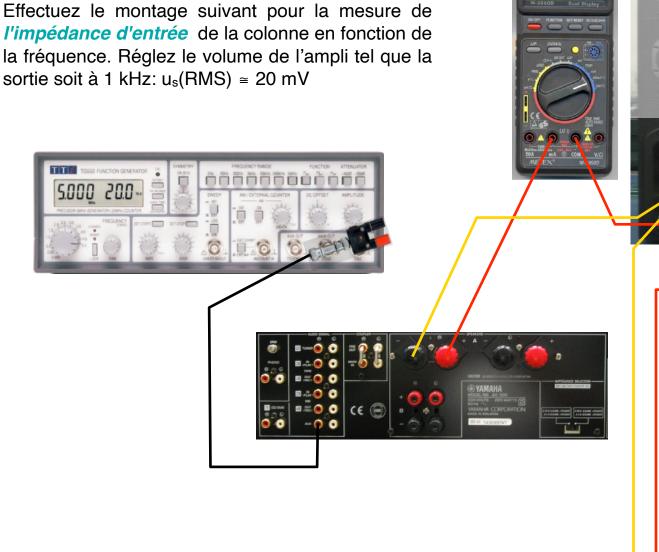
$$Z = |Z| e^{i\varphi}$$

$$Z = |Z|e^{i\varphi}$$

$$\frac{1}{Z} = \frac{1}{R} + i\omega C + \frac{1}{i\omega L}$$


$$|z| = \frac{1}{\sqrt{\frac{1}{R^2} + \left(\omega C - \frac{1}{\omega L}\right)^2}}$$

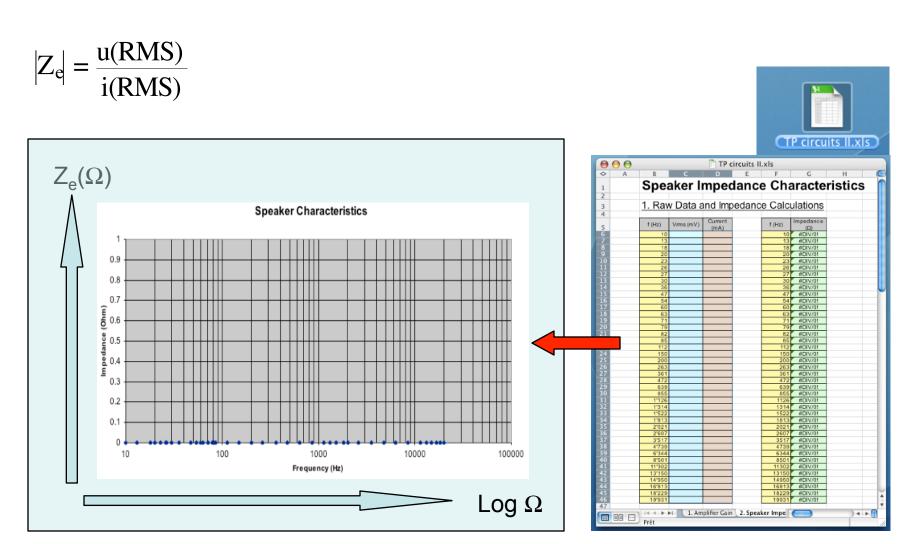
$$\tan \varphi = R\left(\frac{1}{\omega L} - \omega C\right)$$


2) Réponse d'un dipôle: impédance d'une colonne sonore

Effectuez le montage suivant pour la mesure de *l'impédance d'entrée* de la colonne en fonction de la fréquence. Réglez le volume de l'ampli tel que la sortie soit à 1 kHz: $u_s(RMS) \approx 20 \text{ mV}$

2) Réponse d'un dipôle: impédance d'une colonne sonore

l'impédance d'entrée de la colonne en fonction de la fréquence. Réglez le volume de l'ampli tel que la sortie soit à 1 kHz: u_s(RMS) ≅ 20 mV



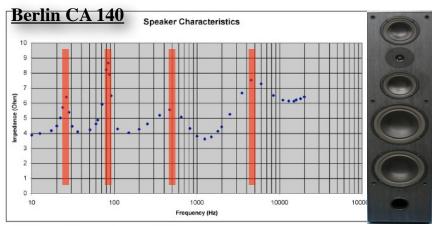
IRMS

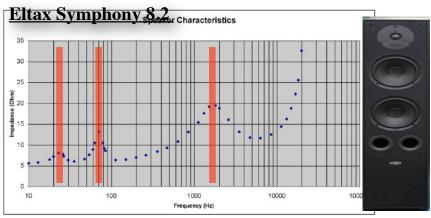
Réponse d'un dipôle: impédance d'une colonne sonore

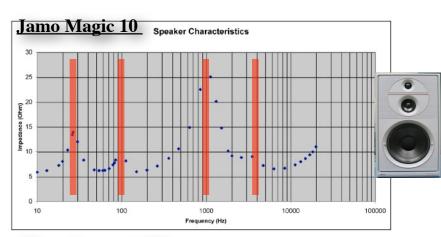
Reportez dans un diagramme lin-log *l'impédance d'entrée* de la colonne en fonction de la fréquence (20 Hz à 20 kHz)

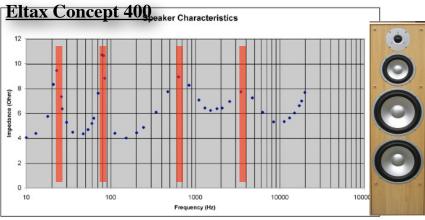
Réponse d'un dipôle: impédance d'une colonne sonore

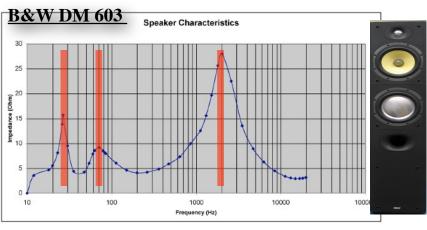
$$|Z_e| = \frac{u(RMS)}{i(RMS)}$$

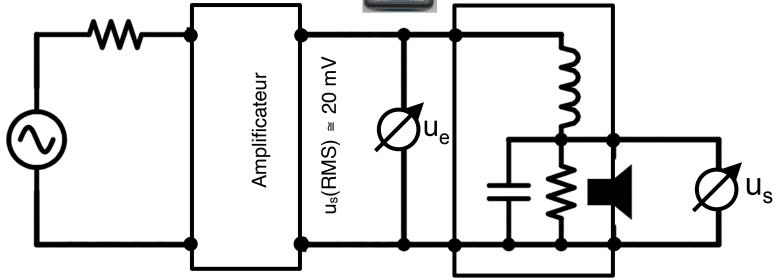


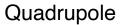

Speaker Impedance Characteristics


1. Raw Data and Impedance Calculations										
f (Hz)	Vrms (mV)	Current (mA)		f (Hz)	Impedance (Q)					
10	12.2	3.23		10	3.7770898					
13	12.7	3.32		13	3.8253012					
18	13.1	3.28		18	3.9939024					
20	13.3	3.22		20	4.1304348					
23	14.1	2.96		23	4.7635135					
26	15.1	2.49		26	6.064257					
27	15.0	2.48		27	6.0483871					
30	14.2	2.97		30	4.7811448					
36	13.2	3.29		36	4.0121581					
47	13.2	3.28		47	4.0243902					
54	13.4	3.20		54	4.1875					
60	13.7	3.09		60	4.433657					
63	13.9	3.02		63	4.602649					
71	14.7	2.72		71	5.4044118					
79	15.7	2.20		79	7.1363636					
82	16.0	2.06		82	7.7669903					
85	16.1	1.98		85	8.1313131					
112	13.4	3.22		112	4.1614907					
150	13.0	3.33		150	3.9039039					
200	13.4	3.23		200	4.1486068					
263	13.9	3.08		263	4.512987					
361	14.4	2.90		361	4.9655172					
472	15.1	2.64		472	5.719697					
639	14.5	2.95		639	4.9152542					
855	13.5	3.35		855	4.0298507					
1'126	12.8	3.62		1126	3.5359116					
1'314	12.8	3.62		1314	3.5359116					
1'522	13.0	3.55		1522	3.6619718					
1'813	13.6	3.32		1813	4.0963855					
2'021	14.1	3.13		2021	4.5047923					
2'607	14.9	2.75		2607	5.4181818					
3'517	15.6	2.27		3517	6.8722467					
4'739	15.9	1.90		4739	8.3684211					
6'344	15.6	1.82		6344	8.5714286					
8'501	15.1	1.72		8501	8.7790698					
11'302	14.8	1.46		11302	10.136986					
13'150	14.8	1.23		13150	12.03252					
14'950	14.7	1.02		14950	14.411765					
16'813	14.7	0.84		16813	17.5					
18'229	14.6	0.69		18229	21.15942					
19'931	14.6	0.58		19931	25.172414					


Réponse d'un dipôle: impédance d'une colonne sonore


Le diagramme de *l'impédance* d'entrée de la colonne en fonction de la fréquence (20 Hz à 20 kHz)

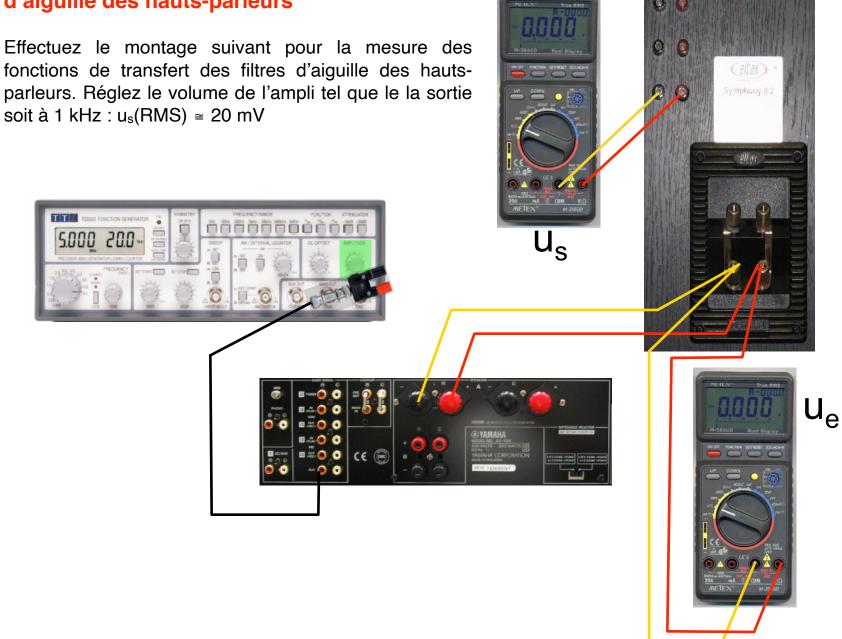



3) Réponse de quadripôles passifs: les filtres d'aiguille des hauts-parleurs

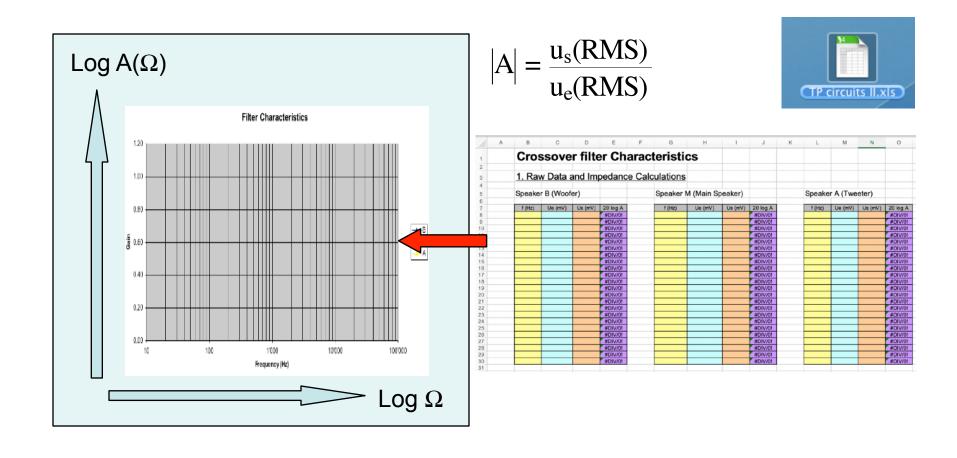
Effectuez le montage suivant pour la mesure des fonctions de transfert des filtres d'aiguille des hauts-parleurs. Réglez le volume de l'ampli tel que le la sortie soit à 1 kHz : $u_s(RMS) \approx 20 \text{ mV}$

0 0

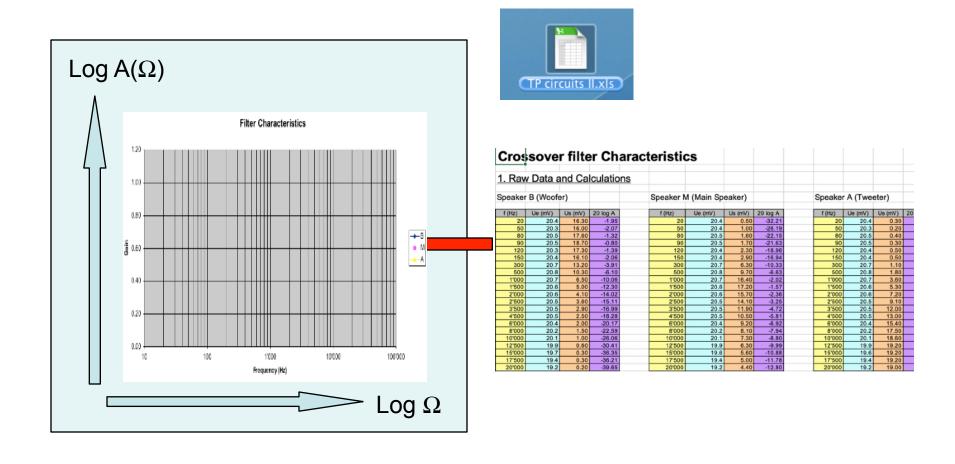
0 0


Symphony 8.2

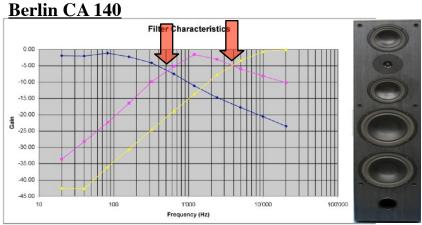
elfax

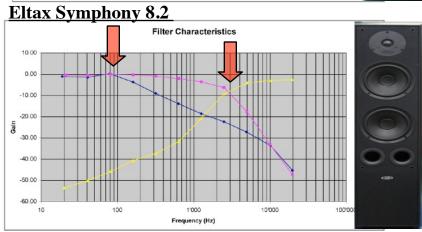

3) Réponse de quadripôles passifs: les filtres d'aiguille des hauts-parleurs

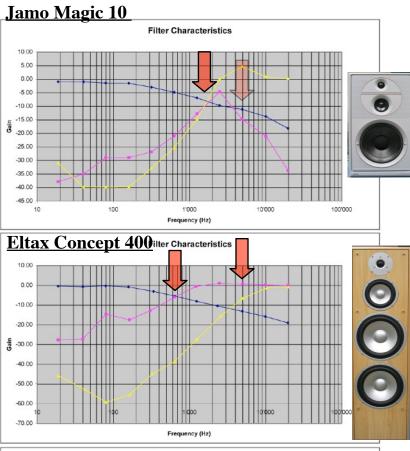
fonctions de transfert des filtres d'aiguille des hautsparleurs. Réglez le volume de l'ampli tel que le la sortie soit à 1 kHz : $u_s(RMS) \approx 20 \text{ mV}$

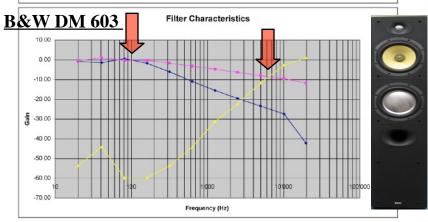

Réponse de quadripôles passifs: les filtres d'aiguille des hauts-parleurs

Reportez dans un diagramme log-log de Bode *les 3 fonctions de transfert* des filtres d'aiguille pour les haut-parleurs basse, médium et aigu, en fonction de la fréquence (20 Hz à 20 kHz):

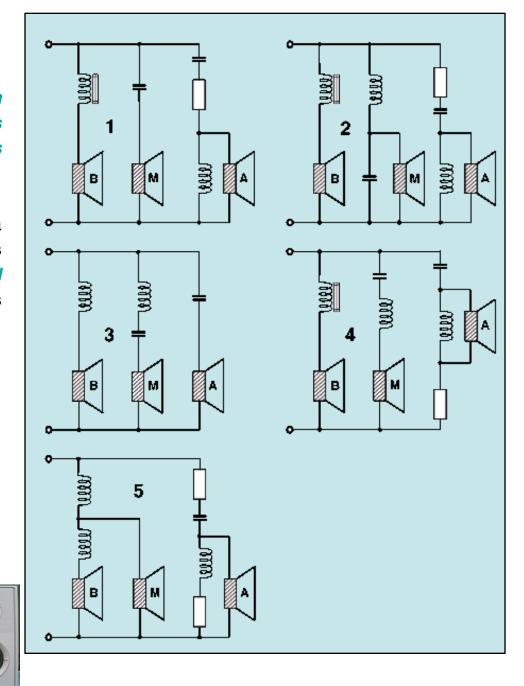

Réponse de quadripôles passifs: les filtres d'aiguillage des hauts-parleurs


$$\left|A\right| = \frac{u_s(RMS)}{u_e(RMS)}$$



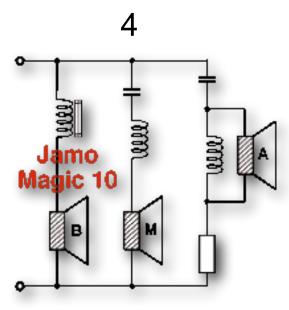

Réponse de quadripôles passifs: les filtres d'aiguille des hauts-parleurs

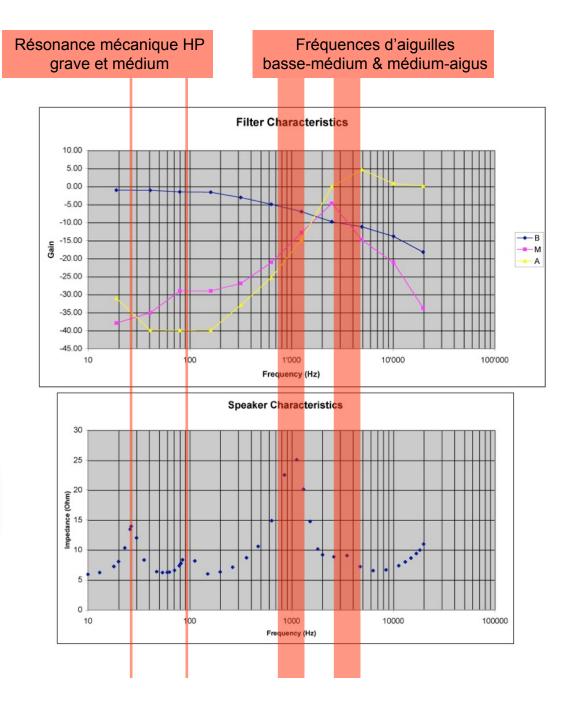
Le diagramme de Bode des *3 fonctions de transfert* des filtres d'aiguille pour les haut-parleurs basse, médium et aigu, en fonction de la fréquence (20 Hz à 20 kHz).


Discussion

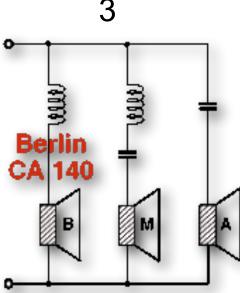
- a) Essayer de commenter en les corrélant la courbe d'impédance de la colonne et les fonctions de transfert des filtres d'aiguillage de la colonne.
- b) A l'aide de la courbe d'impédance de la colonne et des fonctions de transfert des filtres d'aiguille, pouvez-vous retrouver quel est le filtre de votre colonne parmi les filtres suivants? Justifiez votre choix!

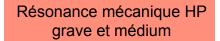
Eltax Symphony 8.2 B&W DM 603 S3 Eltax Concept 400 Jamo Magic 10 Berlin CA 140

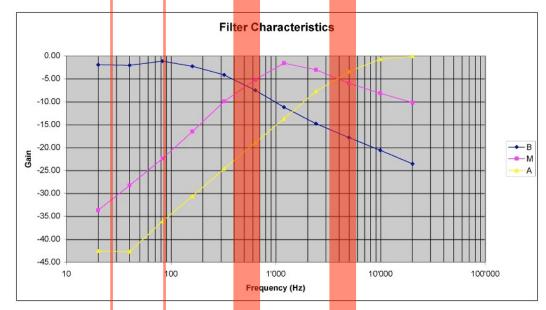


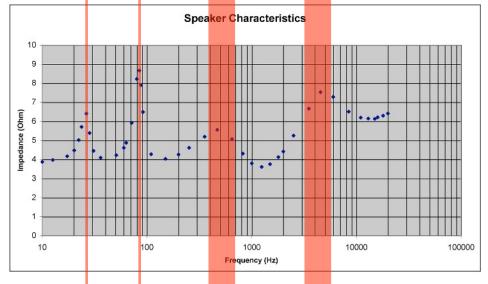


Jamo Magic 10

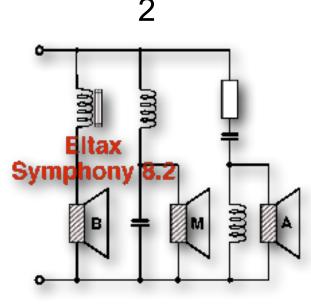


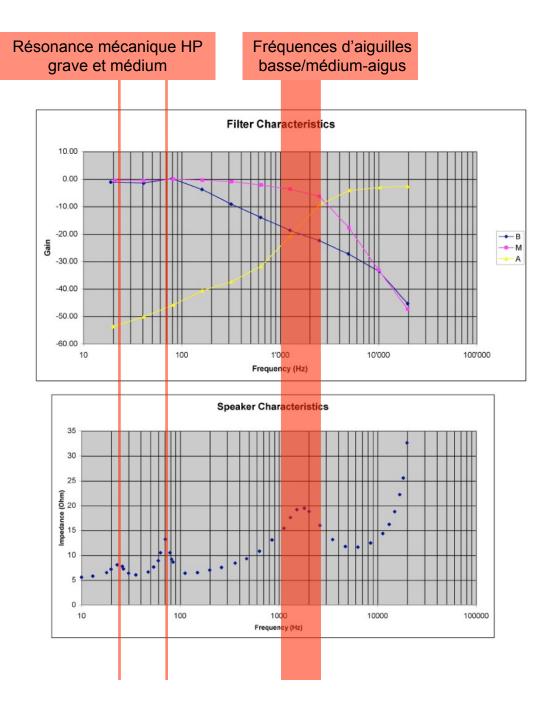



Berlin CA 140



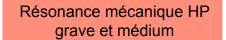
Fréquences d'aiguilles basse-médium & basse-aigus

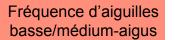




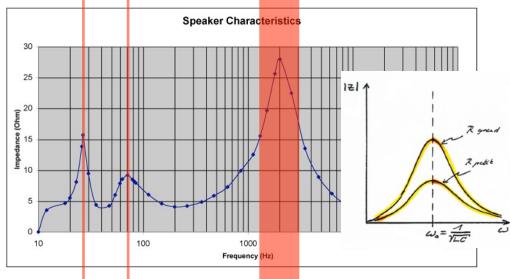
Eltax Concept 400 Résonance mécanique HP Fréquences d'aiguilles grave et médium basse-médium & basse-aigus Filter Characteristics 10.00 0.00 -10.00 -20.00 -30.00 -40.00 -50.00 -60.00 10,000 -70.00 Frequency (Hz) Speaker Characteristics 12 10 Eltax Concept 400 100 10 1000 10000 100000 Frequency (Hz)

Eltax Symphony 8.2

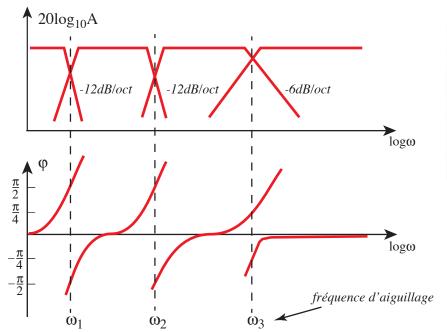


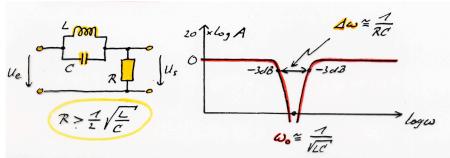


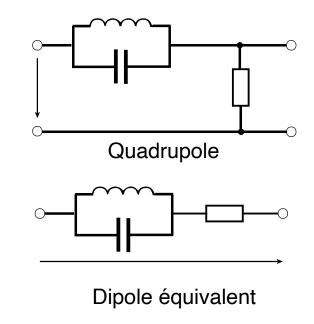

B&W DM 603 S3



B&W DM603 S3

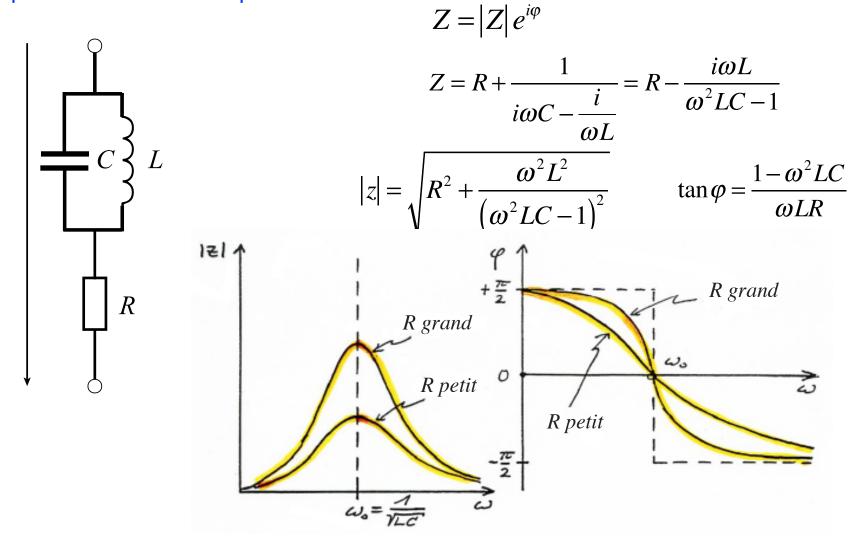






Pourquoi maximum d'impédance au crossover des filtres ?

equivalent à un filtre bouchon



Les dipôles

U = ZI

Loi d'Ohm

Exemple: circuit résonnant parallèle

